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Abstract—

Many Earth and Space Science applications involve analysis
of distributed data in a heterogeneous computing environment.
NASA Earth Science Distributed Data Archives, sensor net-
works, and virtual observatories are some examples of such
environments that deal with distributed data. Standard off-the-
shelf centralized data mining products usually scale poorly and
sometimes completely fail in such distributed environments with
heterogeneous data sources, limited bandwidths, and multiple
computing nodes. Distributed Data Mining (DDM) technology
offers an alternate choice. It pays careful attention to the
distributed resources of data, computing, communication, and
human factors in order to use the resources in an optimal fashion.
This paper discusses applications of the DDM technology in the
domain of Earth and Space Sciences and offers some case studies
from these domains. It discusses some of the DDM algorithms
and also offer experimental results to illustrate their capabilities.

Keywords: Distributed data mining, Bayesian networks, NASA
DAO monthly subset data, NOAA AVHRR Pathfinder data,
Virtual observatories, sensor networks.

I. INTRODUCTION

Advances in computing and communication over wired and
wireless networks have resulted in many pervasive distributed
computing environments in many domains. Earth and Space
Sciences are no exceptions. Wireless sensor networks for
remote scientific explorations, network of distributed massive
data repositories such as NASA Earth Science Distributed
Data Archives and virtual observatories are some examples.
These environments often come with different distributed and
heterogeneous sources of data and computation. Mining in
such environments naturally calls for proper utilization of
these distributed resources. Mareover, in some privacy sensi-
tive applications (common in security and health-care related
applications) different, possibly multi-party, data sets collected
at different sites must be processed in a distributed fashion
without collecting everything to a single central site. However,
most off-the-shelf data mining systems are designed to work as
a monolithic centralized application. They normally down-load
the data to a centralized location and then perform the data
mining operations. This centralized approach does not work
well in many of the emerging distributed and ubiquitous data
mining applications because of poor exploitation of distributed
resources, high communication load, high power consumption
(e.g. in wireless sensor networks), and many other reasons.

Distributed Data Mining (DDM) [7], [10] offers an alternate,
usually more scalable, approach to mine data in a distributed
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Fig. 1. A typical distributed data mining environment.

environment. DDM pays careful attention to the distributed
resources of data, computing, communication, and human
factors in order to use them in an optimal fashion. Figure
1 shows the structure of a typical DDM application that runs
over a network of multiple data sources and compute nodes.
This paper offers some case studies that involve applications
of DDM algorithms for analyzing Earth and Space Science
data.

Section Il presents an overview of some of the emerging
DDM applications that are relevant to Earth and Space Sci-
ence research. Section 111 describes a specific application of
distributed Bayesian networks from NASA and NOAA data
sets. Section 1V describes another project which is concerned
with mining distributed virtual observatories. Finally, Section
V concludes this work.

Il. EMERGING APPLICATIONS OF DDM

This section discusses some general emerging application
directions for the field of distributed data mining (DDM).
DDM applications come in different flavors. When the data can
be freely and efficiently transported from one node to another
without significant overhead, DDM algorithms may offer bet-
ter scalability and response time by (1) properly redistributing
the data in different partitions or (2) distributing the computa-
tion, or (3) a combination of both. These algorithms often rely
on fast communication between participating nodes. When the
data sources are distributed and cannot be transmitted freely
over the network due to privacy-constraints or bandwidth
limitation or scalability problems, DDM algorithms work by
avoiding or minimizing communication of the raw data. Both
of these scenarios have interesting real-life applications. The
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Fig. 2. Comparison of the battery power needed to transmit data over
CDPD wireless networks with that for performing PCA in a HP Jornada
690 (Hitachi SuperH SH-3 133MHz processor with 32MB RAM running
Windows CE). The results clearly show that the power consumed by the on-
board computation is a lot less compared to that needed to transmit to a
remote desktop machine over CDPD wireless networks.

following discussion offers some of the emerging ones where
the DDM technology is finding increasing attention.

A. Mobile and Wireless Applications

There are many domains where distributed processing of
data is a natural and scalable solution. Distributed wireless
applications define one such domain. Consider ad hoc wireless
sensor networks for applications such as monitoring vegetation
or atmospheric characteristics or forest fire-related attributes.
Most such applications of sensor networks involve relatively
long period of little activities with occasional burst of activities
triggered by certain conditions. If continuous monitoring of the
incoming data requires non-trivial data analysis then we may
need DDM algorithms for minimizing data communication,
improving load balance across the network, reducing response
time, improving scalability, and minimizing consumption of
the battery power.

Central collection of data from all the sensor nodes followed
by data analysis using standard centralized data mining sys-
tems would fail to scale up. This approach is likely to create
heavy traffic over the limited bandwidth wireless channels
which in turn will offer poor response time and drain a lot
of power from the devices. Figure 2 illustrates this point. It
shows that the battery power needed to transmit data over a
standard CDPD network from one node to another is a lot more
than than that needed to perform principal component analysis
on the same data set using a HP Jornada 690 (Hitachi SuperH
SH-3 133MHz processor with 32MB RAM running Windows
CE) system. Further discussion on the power consumption
characteristics of popular data mining techniques can be found
elsewhere [11]. This result points out that it may be worthwhile
to perform some of the data analysis on-board the sensor node,
which the DDM algorithms usually adopt, instead of sending
all the data to a remote node.

Power consumption is not the only issue. DDM over wire-
less networks also allows the application to run efficiently even
in the presence of severe bandwidth constraints. Therefore, it
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Fig. 3. Architecture of the vehicle data mining system.

is not surprising to see a growing number of DDM systems
for mobile applications [8], [11]. For example, the distributed
vehicle data stream mining system [6] connects to the vehicle
data bus in real time and monitors the data using a PDA-based
platform and communicates with the remote control station
over wireless networks. Figure 3 shows the on-board hardware
developed at the DIADIC laboratory of the University of
Maryland, Baltimore County and a screen-shot of the desktop-
based interface that interacts with the remote on-board devices
over wireless networks. This system continuously monitors
and mines the on-board data stream generated by the different
vehicle systems. The control station allows the user to monitor
and mine a large number of vehicles in a fleet. This particular
application deals with distributed mobile data sources and
static user of the control station. There are also many mobile
applications that deal with static data sources and mobile
users. The MobiMiner system for mining and monitoring stock
market data, reported elsewhere [8], is an example of that.

We believe that in the near future we will see more mo-
bile applications of the DDM technology for personalization,
process monitoring, intrusion detection in ad hoc wireless
networks, and other related domains.

B. Large Scale Scientific, Business, and Grid Mining Appli-
cations

The wireless domain is not the only example. In fact, most
of the applications that deal with time-critical or a large-
quantity of distributed data may benefit by paying careful
attention to the distributed resources for computation, storage,
and the cost of communication. The world wide web is a
very good example. It contains distributed data and com-
puting resources. An increasing number of databases (e.g.
weather databases, astrophysical data from virtual observato-
ries, oceanographic data at www.noaa.gov), and data streams
(e.g. financial data at www.nasdag.com, emerging disease
information at www.cdc.gov) are coming on-line. It is easy
to think of many applications that require regular monitoring
of these diverse and distributed sources of data. A distributed
approach to analyze this data is likely to be more scalable and
practical, particularly when the application involves a large



number of data sites. The distributed approach is also finding
applications in mining remote sensing and astronomy data. For
example, the NASA Earth Observing System (EOS), a data
collector for a number of satellites, holds many data sets that
are stored, managed, and distributed by the different EOS Data
and Information System (EOSDIS) sites that are geographi-
cally located all over the USA. A pair of Terra spacecraft and
Landsat 7 alone produces about 350 GB of EOSDIS data per
day. An on-line mining system for EOS data streams may
not scale if we use a centralized data mining architecture.
Mining the distributed EOS repositories and associating the
information with other existing environmental databases may
benefit from DDM [3]. In astronomy, the size of telescope
image archives continues to increase very fast as information
is collected for new all-sky surveyors such as the GSC-II [9]
and the Sloan Digital Sky Survey'. DDM may offer a practical
scalable solution for mining these large distributed astronomy
data repositories.

As mentioned earlier, DDM may also be useful in grid
environments [1], [2], [4], [13] with multiple compute nodes
connected over high speed networks. Even if the data can be
centralized using the relatively fast network, proper balancing
of computational load among a cluster of nodes may require
a distributed approach. Moreover, a distributed environment
requires proper management of other distributed resources like
the data, privacy, and collaborative user-interaction. Several
new distributed data mining applications belong to this cate-
gory. The Kensington Enterprise Data Mining System 2 and
some of the counter-terrorism applications reported elsewhere
[5] belong to this category.

There exist several other emerging DDM application areas.
Mining distributed multi-party, privacy-Sensitive data is one
such example. However, since most of the Earth and Space
Science data are not usually privacy-sensitive, we do not
discuss this issue in this paper. Interested readers should
consult [14] for further details on this topic.

The rest of this paper focuses on specific applications
of DDM in the Earth and Space Science domain. First,
we consider a specific application of Bayesian networks for
mining distributed NASA and NOAA data sets in the following
section.

I11. DISTRIBUTED BAYESIAN NETWORK LEARNING FROM
MULTI-ORGANIZATIONAL EARTH SCIENCE DATA

In an earlier work [12], we proposed a collective method
to address the problem of learning the structure of a Bayesian
network from distributed heterogeneous database. In this case,
the dataset is distributed among several sites, with different
features at each site. The proposed collective structure learning
method has four steps: local learning, sample selection, cross
learning, and combination. The collective learning method can
learn the same structure that obtained by a centralized learning
method (which simply aggregates data from all the sites into
a single site) with a subset of samples transmitted to a single
site.

http://www.sdss.org
2http://www.inforsense.com

We have applied the proposed collective method to a real-
world earth science distributed data mining problem. Two
distributed datasets, NASA DAO monthly subset and NOAA
AVHRR Pathfinder product, are used in this application. The
data model are multi-dimension time series (time, longitude,
latitude, features). After some preprocessing steps including
feature selection, clustering, z-score, and quantization, we
coordinate these two distributed datasets and choose a subset
of samples that could have a homogeneous pattern. Then we
apply the proposed algorithm to this subset of data and learn a
collective BN B.,;;. The BN B,,; learned from the collective
method is close to the BN B.,;, learned from a centralized
method.

A. NASA DAO and NOAA AVHRR Pathfinder Datasets

In this Earth science distributed data mining application,
we use two datasets: NASA DAO subset of monthly means
and a NOAA AVHRR Pathfinder product. The data model in
these two datasets is multidimensional time series as shown in
Figure 4. Each spatial-temporal data point contains a feature
vector.

longitude

latituce E’

Jan 1983

Time

Fig. 4. Multidimensional time series data model.

NASA Data Assimilation Office (DAO) provides compre-
hensive and dynamically consistent datasets that represent the
best estimates of the state of the atmosphere at that time.
The product GEOS-1 uses meteorological observations and an
atmospheric model. The dataset used in this application is a
subset of the DAO monthly mean dataset. The DAO monthly
mean dataset, in turn, is based on the DAQ’s full multi-year
assimilation. The DAO monthly mean has 180 grid points in
the longitude direction from west to east with the first grid
point at 180W and with a grid spacing of 2 degrees. There
are 91 grid points in the latitude direction from north to south
with the first grid point at the 90N and with a grid spacing of
2.0 degrees.

The dataset we used from NOAA is a product of NOAA
AVHRR Pathfinder. Its format is different from that of DAO
dataset: Horizontal Resolution of 1 degree by 1 degree, grid
point data (360 x 180 values per level, proceeding west to east
and then north to south).

B. Preprocessing

1) Feature Selection: There are 26 features in DAO dataset
and 9 features in NOAA dataset. However, some features
had lot of missing values. One possibility is to use the
interpolation technique such as nearest neighbor averaging to
handle this problem. However, some features have the missing
value at some grid points because these features do not exist



TABLE |
NASA DAO FEATURES

Feature Cldfrc in March, 1983

Index  Feature Description Units "
1 Cldfrc 2-dimensional total cloud fraction Unitless EN
2 Evaps Surface evaporation mm/day :
3 olr outgoing longwave radiation W/m**2 -
4 Osr outgoing shortwave radiation W/m**2 -0 r o E
5 Pbl planetary boundary layer depth HPa SA S e R S
6 preacc total precipitation mm/day O e e e
7 qgint precipitable water glem**2
8 radlwg net upward longwave radiation at ground W/m**2
9 radswg  net downward shortwave radiation at ground W/m**2 o1 02 03 04 05 06 07 08 09 1
10 t2m temperature at 2 meters K Feature Cldfc in August, 1983
11 tg Ground temperature K
12 ustar Surface stress velocity m/s
13 vintuq vertically averaged uwnd*sphu (m/s)(a/kg)
14 vintvq vertically averaged vwnd*sphu (m/s)(a/kg) 3
15 winds Surface wind speed m/s 5
TABLE 1l
NOAA FEATURES 0 30 60 90 120 150 180 210 240 270 300 -330 360
Longitude
Index Feature Description
16 asfts Absorbed Solar Flux total/day HE @ = T
17 olrcs day Outgoing Long Wave Radiation clear/day oo e s e e ee e
ig O(IJT;tSS r:jlg)f;t Ogltj%gé?r?gLfgr?gv\\;\a/:\?engéai;?gnC:ggl%lg?t Fig. 5. Feature Cldfrc in March (left) and August (right), 1983.
20 olrts night ~ Outgoing Long Wave Radiation total/night
21 tcf day Total Fractional Cloud Coverage day
22 tef night Total Fractional Cloud Coverage night

(undefined) at that grid point. For example, some features from
NOAA dataset are only valid over the ocean region. Although
other features have values at that grid, these missing value
features make the whole record at that grid point useless when
we try to build a model to represent the relationship among
all variables. So we decided to drop the variable containing a
large fraction of missing values. We also dropped some multi-
layer features and very deterministic features (those that show
little variability). After dropping these features, we were left
with 15 DAO and 7 NOAA features. These features are listed
in Tables | and II.

2) Coordination: The next preprocessing step is to co-
ordinate the distributed NASA DAO/NOAA datasets. It is
used to link an observation between the datasets. Since DAO
and NOAA datasets have different grid format, we re-grid
the NOAA data into DAO format. We selected a common
temporal coverage — January 1983 to December 1992 —
for the merged dataset (global spatial coverage). Using the
mapping key (time, longitude, latitude), we get a distributed
database with consistent data format.

3) Clustering: In general, the global dataset does not have a
homogeneous pattern. Different spatial-temporal regions may
have different patterns. Figure 5 depicts the values of feature
Cldfrc(cloud fraction) in March and August, 1983. Clearly,
the range of values in tropical and arctic regions are quite
different. Also, distributions of the same region for different
months are not similar to each other.

Using a single BN to model the interaction between the
features for the entire earth may not be suitable. Therefore,
clustering is first used to segment the spatio-temporal dataset
into relatively homogeneous regions. The first step is to
aggregate the same month data together. That is, we extract all

January data for year 1983-1992 and put them into a dataset.
This is because of the seasonal nature of the variation in the
features (climate behavior is periodic over time). This is a sort
of clustering in temporal domain. After that, we need to do
spatial clustering. Since the data from first step is for different
time points, we compute the average value and get dataset D™.
In D™, there is no temporal information. Then three clustering
algorithms, k-mean, fuzzy c-mean, and EM, are applied to
D™, The clustering results of DAO and NOAA datasets are
shown in Figures 6 and 7. In these figures, same color in
same frame means the data points belong to the same cluster.
However, similar colors in different frames are irrelevant. The
clustering result of DAO and NOAA datasets are consistent.
Most data grids in same cluster in DAO have the same labels
in NOAA. K-mean requires the least computation time and
EM can get the best clustering. In our experiment, we used
the clustering results of EM. We chose a cluster corresponding
to a region of south Pacific ocean (from (170W, 60S) to (90S,
0)) and extracted data in this region to build a BN model.

4) Z-score: Z-score is a standard technique in statistics to
transform a random variable into one with zero-mean and unit
variance i.e.,

M

where z is the random variable and z, is the Z-score.

5) Quantization: This step is used to quantize the contin-
uous feature value into discrete values. We use the histogram
to quantize the values. If the histogram of z, is similar to that
of a Gaussian curve, we quantize it into 3 levels:{0-low, 1-
average, 2-high}. If 2, resembles a uniform distribution or has
two modes, it is quantized into 2 levels: {0-low, 1-high}. Note
that we do not use more than three quantization levels. The
reason for this is that too many quantization levels will lead
to a large number of parameters. This makes the BN very
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Fig. 6. DAO Clustering results.
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Fig. 7. NOAA Clustering results.

complex and hard to do learn. The number of quantization
levels for the features used are [3, 3, 3, 2, 3, 2, 2, 3, 2, 3, 3,
2,2,3,2,2, 2,2, 2,2, 3, 3]. Figure 8 shows the histogram
of raw, z-score, and quantized value of feature 8 and feature
20.
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Fig. 8. Histogram of feature 8 and feature 20

After above preprocessing steps, we have twelve distributed
datasets. Each dataset corresponds to a collection of monthly
data for year 1983-1992 in a rectangular region from (170W,
60S) to (90W, 0). Each database has 22 features (15 from
NASA DAO and 7 from NOAA) and these features are
discrete. All samples are complete with no missing value.

C. Distributed BN Learning

We compare B,,; with B, to evaluate the performance
of collective method. We use structure difference to describe
the similarity between B.,; and B, It is defined as the
sum of missing links (a link in B, but not in B,;) and
extra links a link in B.y; but not in Beyr).

March dataset was used in the application. It has 9130
samples. The node ordering used was [10 11 8 76 31 9
14 2 135 12 15 16 18 17 20 19 21 22 4]. The centralized
BN structure is shown in figure 9. B, is very complicated.
It has 64 local links and 9 cross links. The cross links are:
2 —» 16,3 —» 16,3 —» 17,3 — 18,7 — 16,10 — 17,10 —
18,11 — 16,11 — 20. Cross nodes are {16,17,18,20}. In
local learning step, there are no extra links. In cross learning
step, when we transmit 35% samples, we can get 7 correct
cross links and no extra cross links. 2 — 16 and 3 — 18 are
missing. If we transmit 66% samples, we can get all correct
cross links and no extra cross links. The collective learning
result is in Figure 10. The fact that there are 9 cross links and
many local links makes the distributed learning a very hard
problem. The performance of collective learning is fairly good,
given the complexity. This experiment again demonstrates the
effectiveness of collective method.

D. Discussion

We have presented an approach to learning the structure of
BN from distributed heterogeneous data. This is based on a



Fig. 9. Becntr of March dataset.
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Fig. 10. NASA DAO/NOAA structure learning results.

collective learning strategy, where a local model is obtained
at each site and the global associations are determined by a
selective transmission of data to a central site. In our collective
method, local learning can identify the local structure of local
variables and local links of cross variables. Cross learning can
detect the cross links of cross variables. Combining the results,
we can put together the local BNs and the BN learned from
cross learning and also remove any “extra” local links. We
apply the proposed distributed BN structure learning to NASA
DAO monthly subset/NOAA AVHRR Pathfinder Databases.
To our knowledge, this is the first research work on distributed
BN structure learning from NASA/NOAA Earth science data.
Mining distributed Earth science data includes preprocessing
techniques which is important for successfully finding the
useful patterns. Preprocessing techniques such as feature selec-
tion, coordination, clustering, normalization, and quantization
are introduced. Finally, we learn interesting patterns. S..;; is

very close to S..¢ With 40% samples transmitted. This clearly
shows the efficiency and accuracy of the collective methods.

IV. DISTRIBUTED DATA MINING OF ASTRONOMY DATA

In this section we describe an on-going project in its early
stages to explore the use of distributed data mining over a
collection of large, geographically distant data repositories
containing Astronomy data. While each contains valuable
information, the combination contains yet more. Tools for ana-
lyzing data in both databases could allow astronomers to make
discoveries they could not have made otherwise. The analysis,
in principal, could be carried out in a centralized fashion. First
download all of the relevant data from each repository to a
central site, join to form a single (potentially much larger)
dataset, then apply traditional data mining tools. While this
solution might be acceptable in some circumstances, it does
not offer much room for scalability as in the applications
described earlier this paper.

The goals of this project are to explore the use of distributed
data mining as an alternative to centralizing the data. A pri-
mary motivation is the potential for vastly improved scalability.
Next we briefly describe the data repositories and the goals of
the analysis. Finally we describe key problems that need be
overcome to carry-out the analysis without centralizing.

A. The Data

The Sloan Digital Sky Survey (SDSS)3 and 2 Micron All-
Sky Survey (2MASS)* have compiled databases containing
well-curated data about millions of astronomical objects.
These two databases are located on opposite ends of the
U.S. and operate independently. Moreover both are extremely

Shttp://www.sdss.org
4http://irsa.ipac.caltech.edu/applications/Gator/



large (470 million+ point sources for 2MASS and 53 million+
objects for SDSS).

The data of interest to our project can be conceptually
thought of as a table in the SDSS with variables ra, dec, j, h, k
and a table in the 2MASS with variables ra, dec, u, g, r, 1, 2.
Each row in both tables represents information about an
astronomical object. Its ra, dec entries can be thought of as
a “location” in the sky, while the others represent wave-band
measurements. To combine data across the repositories, rows
must be matched according to their ra, dec locations.®

However, the wave-bands by themselves are not of interest,
rather their pair-wise differencese.g. u—j, u—h, u—k, g—j,
etc.. There are 28 different (unordered) pairs. So, conceptually,
each matching pair of rows will generate a 28-dimensional
new data point. The 28-dimensional new data points can be
thought of as the “signature” of an object.

B. The Data Analysis Goals

Objects whose signature stands-out are interesting. Their
identification and subsequent more careful examination by
astronomers can lead to new scientific discoveries. The pri-
mary data analysis goal is to aid the astronomer in identifying
objects whose signature stands-out. To do this we intend to
explore two types of data mining techniques, clustering and
outlier detection. Clustering attempts to find natural groups
of points in a body of data. The groups (clusters) contain
points which are potentially similar. Those points not falling in
clusters can be thought to stand-out. Outlier detection attempts
to find directly points which are considerably different than the
rest.

Of course, a distributed solution would not realize all 28-
dimensional data points at a central site. Instead such a
solution strives to do most of its computation locally and
minimize communication. It in known in the distributed data
mining field that some problems lend themselves well to
distributed solutions.

C. Key Problem

The main problem we face is that 15 of the 28 features
(dimensions) of the signature data are constructed using vari-
ables from both datasets. Localizing the computation is a non-
trivial task. While the distributed data mining community has
considered clustering heterogeneously distributed data,® the
additional twist of constructed difference features makes the
problem unique.

A simple-minded approach is to first form the local dif-
ference sets at each site. The SDSS site will have a differ-
ence table with three features and 2MASS with ten features.
Next, each local table is clustered. From the local clusterings
interesting outliers or isolated clusters can be found. These
represent objects which are astrophysically interesting with
respect to local data. Finally, centralize the data only for those
objects and then compute the “distributed” SDSS-2MASS
differences.

5If their locations are “close enough” the rows are deemed a match.
Sconceptually a table that has been split vertically with columns spread
over remote sites

The advantages of the above approach are simplicity and
low communication cost — messages are only required for
the data representing astrophysically interesting objects which
is likely to be small. The primary disadvantage is that the
results are incomplete. Since the clustering and outlier finding
is applied to local data, interesting clusters/objects may be
missed. For example, if an interesting cluster does not manifest
itself on either local difference table, then it will be missed.

We are also actively pursuing a distributed approach that can
account for the distributed differences (15 features). However,
the problem seems to be unique in the DDM literature, so
we may need to develop a completely new method. While
difficult, this is an exciting prospect as it opens new ground
to explore in DDM.

V. CONCLUSION

In this paper we discussed the emerging field of distributed
data mining (DDM) and some applications in earth and
space science. A common situation involves multiple, large,
geographically distributed data sites. Analysis over all data
sites could provide valuable information that could not be
learned from any site individually. However, centralizing all
of the data to one site is not a feasible option (due to band-
width constraints, privacy, etc.). A DDM approach attempts
maximize the amount of analysis done locally at each site and
minimize communication between.

The main part of this paper discusses an application of DDM
on two distributed earth science datasets: NASA DAO monthly
subset and NOAA AVHRR Pathfinder product. The technique
constructs a Bayesian network without having to centralize the
data, but merely sending a sample. Empirical results show that
good accuracy can be obtained with modest sample sizes.

The last section (before conclusion) discusses the prelim-
inary stages of an application of DDM on space science
datasets: Sloan Digital Sky Survey and 2 Micron All-Sky Sur-
vey. The end goal of the application is a method for identifying
astronomical objects which “stand-out” from the rest. These
objects, when examined more closely by astronomers, can lead
to interesting scientific discoveries.

In conclusion, we believe that DDM has valuable potential
in Earth and space science. This is particularly true as the
data sets accumulated by scientists continue to grow in size.
We encourage scientists to explore applications of DDM in
their domains.
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